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ABSTRACT  

Objectives. Survival analysis is commonly used for analyzing time-to-event data in 

medical research. This study aimed to determine the usefulness of training artificial 

neural networks (ANNs) for predicting the survival time in cancer patients using 

microarray and clinical data. Methods. We analyzed public-domain microarray and 

clinical data sets with different kinds of cancer. We selected 15–30 genes (with 

correlation coefficient values of >0.4) as variables to train the ANNs. All models were 

tested with a testing set to determine their accuracy in predicting the survival time. 

The network with the highest classification accuracy was used in subsequent 

experiments. Results. The selection of 15–30 genes as ANN variables allowed 

well-trained networks to be produced, with correlation coefficients of greater than 

0.7. Conclusions. The results showed that the survival times predicted by an ANN 

using microarray gene expression data are in good agreement with real observations. 

 

INTRODUCTION  



Survival analysis is commonly used for analyzing time-to-event data in medical 

research. The survival time is the length of time that a patient survives after the 

occurrence of a given event related to a disease, such as the time period from the 

beginning to the end of a remission period or the time period from the diagnosis of a 

disease to death. Many cancer studies have considered gene expression and clinical 

data, such as those related to lymphoma [1–4] and ovarian cancer [5]. Such studies 

have applied microarray technology to identify specific cancer-related genes that can 

be used to diagnose and predict the cancer stage. 

The artificial neural network (ANN) is a form of artificial intelligence that employs 

nonlinear mathematical models to simulate the problem-solving process of the 

human brain. Humans apply knowledge gained from past experience to new 

problems, and a neural network similarly uses previously solved examples to build a 

system of “neurons” that makes new classifications, decisions, and predictions. The 

classification rules are not written into algorithms; instead, the network learns them 

from the examples that it encounters. An ANN can be constructed from one or more 

layers of neurons, and many biomedical studies have shown such networks to be 

good at predicting and classifying clinical outcomes [4]. The present study aimed at 

training ANNs using microarray and clinical data in order to predict the survival time 

in cancer patients. 

 

MATERIALS AND METHODS  

Data preprocessing.... We analyzed three public-domain microarray and clinical data 

sets that can be downloaded from the Internet. Data preprocessing and 

normalization were performed using BRB-ArrayTools [6]. The flowchart in Figure 1 

shows the methodology applied in this study, and the data sets used are described 

below. 

 

FIG. 1. Flowchart of the normalization and selection of 

candidate genes from microarray data for training 

networks.  



  

Diffuse large B-cell lymphoma (DLBCL), the most common lymphoid malignancy in 

adults, is curable in less than half of patients [7]. Microarray gene expression profiles 

and survival data were obtained for the study of Shipp et al. [4]. Microarray 

(Affymetrix Hu6800) and clinical data were obtained from 58 untreated patients who 

had been diagnosed with DLBCL. The median follow-up time was 43 months (range, 

<12 to 182 months), during which 27 deaths occurred [4]. The Kaplan-Meier survival 

curve for the 58 DLBCL patients is shown in Figure 2A. 

Follicular lymphoma (FL) is the second most frequent type of non-Hodgkin’s 

lymphoma (NHL), comprising 22% of all NHL cases [8]. Microarray gene expression 

profiles and survival data were obtained for the study of Dave et al. [1]. The data set 

consists of 191 untreated patients who had been diagnosed with FL, with 95 deaths 

occurring during the follow-up. The array chips used were the Affymetrix U133A and 

U133B platforms. The median age at diagnosis was 51 years (range, 23 to 81 years), 

and the median follow-up time was 6.6 years (range, <1.0 to 28.2 years). The details 

of the experiment were reported by Dave et al. [1]. The Kaplan-Meier survival curve 

for the 191 FL patients is shown in Figure 2B. 

Ovarian cancer is a leading cause of cancer death among women in the United States 

and Western Europe, and has the highest mortality rate of all gynecologic cancers. 

Microarray gene expression profiles and survival data were obtained from the study 

of Dressman et al. [5]. Microarray (Affymetrix U133A) and clinical data were obtained 

at the initial cytoreductive surgery from 119 patients who received platinum-based 

primary chemotherapy at Duke University Medical Center and the H. Lee Moffitt 

Cancer Center and Research Institute. The median follow-up time was 21 months 

(range, <1 to 148 months), during which 69 deaths occurred. The details of the 

experiment were reported by Dressman et al. [5]. The Kaplan-Meier survival curve 

for the 119 ovarian cancer patients is shown in Figure 2C. 



 

  

FIG. 2. Kaplan-Meier estimates of the probability of survival 

(median and 95% CI values) for three kinds of cancer.  

Training network. Several types of ANN analysis were performed. The first aim was 

to determine the optimal ANN architecture. The data set was divided into two 

separate groups: (1) random selected 90% uncensored patients (the training set) and 

(2) the other patients (the test set). To train the network, we calculated correlation 

coefficients between variables (genes) and survival times in the training set, with the 

variables for which |r|>0.4 being used as the inputs for network training. All 

networks were trained using commercial software (STATISTICA version 8.0). During 

the supervised training stage, a data set was presented to the ANN along with the 

correct outputs. The ANN was trained by first randomly initializing the connection 

weights between the neurons, and then the data were run through the network. 

Finally, the generated output was compared with the known survival time. The 

process was repeated, and the network altered the connections weights between 

neurons until the errors between the generated and real outputs became negligible, 

at which point the ANN could be used for prediction. Because there is no 

well-established theoretical method for designing an ideal ANN [9], and the optimal 

numbers of hidden nodes and iterations are unknown, the best designs are typically 

determined through trial and error [10]. An optimal network was determined in the 

present study by constructing and training different ANN architectures comprising 

5–30 hidden neurons using the training set. The numbers of iterations and hidden 

neurons were limited due to the learning algorithm of an ANN being able to overfit 

the training examples, which would decrease the generalization accuracy. All models 

were tested with the testing set to determine their accuracy in predicting the survival 



time. The network with the highest classification accuracy was used in subsequent 

experiments. 

RESULTS 

DLBCL. In this experiment there were too many variables (genes) matching the 

originally chosen criterion (r>0.4), and hence the criterion r>0.5 was applied to 

choose the model variables. This criterion resulted in an ANN with the following 16 

genes as input variables being selected from the data on an Affymetrix Hu6800 

microarray chip: D90084_at, D63879_at, U23803_at, HG1879-HT1919_at, D89077_at, 

M73047_at, U13695_at, M99701_at, S69232_at, U41815_at, D15050_at, X77366_at, 

L37882_at, X98001_at, U00238_rna1_at, and U68488_at. The training and test 

results for DLBCL are shown in Figure 3A and 3B, respectively. The optimal ANN 

architecture MLP16-15-1 was found to be a standard feedforward, fully connected, 

back-propagation multilayer perceptron. The root mean square error (RMSE) 

between observed values and the ANN training set was 2.89, and the correlation 

coefficient was 0.986. The RMSE between observed values and the ANN test set was 

2.68, and the correlation coefficient was 0.956. 

 

 

  

FIG. 3. DLBCL survival time (in months): observation 

results vs. prediction results for the training (A) and 

test (B) sets. 

FL. An ANN with the following 30 genes as input variables was selected from the data 

on an Affymetrix U133AB microarray chip using the criterion r>0.4: 242131_at, 

242895_x_a, 206854_s_a, 243293_at, 242980_at, 222923_s_a, 215095_at, 

236348_at, 236775_s_a, 202979_s_a, 225981_at, 235047_x_a, 212177_at, 

201083_s_a, 204732_s_a, 200045_at, 222789_at, 203566_s_a, 214048_at, 

243054_at, 240295_at, 224052_at, 217929_s_a, 212381_at, 203970_s_a, 

220482_s_a, 221045_s_a, 232932_at, 229086_at, and 243835_at. The training and 



test results for FL are shown in Figure 4A and 4B, respectively. The optimal ANN 

architecture MLP30-28-1 was found to be a standard feedforward, fully connected, 

back-propagation multilayer perceptron. The RMSE between observed values and the 

ANN training set was 23.61, and the correlation coefficient was 0.886. The RMSE 

between observed values and the ANN test set was 27.69, and the correlation 

coefficient was 0.771. 

 
  

FIG. 4. FL survival time (in months): observation results 

vs. prediction results for the training (A) and test (B) 

sets. 

Ovarian cancer. An ANN with the following 20 genes as input variables was selected 

from the data on an Affymetrix U133A microarray chip using the criterion r>0.4: 

202322_s_at, 213270_at, 201455_s_at, 204777_s_at, 212483_at, 202350_s_at, 

213396_s_at, 211622_s_at, 209251_x_at, 202923_s_at, 209654_at, 205679_x_at, 

213646_x_at, 212639_x_at, 211481_at, 213019_at, 200047_s_at, 213976_at, 

202314_at, and 204726_at. The training and test results for ovarian cancer are shown 

in Figure 5A and 5B, respectively. The optimal ANN architecture MLP20-8-1 was 

found to be a standard feedforward, fully connected, back-propagation multilayer 

perceptron. The RMSE between observed values and the ANN training set was 5.10, 

and the correlation coefficient was 0.988. The RMSE between observed values and 

the ANN test set was 17.23, and the correlation coefficient was 0.868. 

 

  

FIG. 5. Ovarian cancer survival time (in months): 

observation results vs. prediction results for the training 

(A) and test (B) sets. 



DISCUSSION  

In the above experiments, the results of which are summarized in Table 1, we 

observed that selecting 15–30 genes as ANN variables allowed training into good 

networks. When more than 30 or less than 15 variables were used to train the 

network, the correlation coefficient was lower than 0.7. The ANN prediction results 

of the data sets displayed some aberrations, but these might have been attributable 

to the use of different patient treatment methods. 

  

TABLE 1. Summary of study results. 

For the DLCBL data set, when only using 16 genes as variables the survival time 

predicted by the ANN was strongly correlated with the observed survival time. In 

addition, genes D63879_at (KIAA0156), HG1879-HT1919_at (ARHQ), U41815_at 

(NUP98), and X77366_at (TCF11) were cancer-related genes that are reported in 

OMIM [11] databases. The ANN prediction result for this data set was therefore 

considered to be good. 

For the FL data set, when using 30 genes as variables the survival time predicted by 

the ANN was correlated with the observed survival time. Moreover, genes 

206854_s_at (MAP3K7), 225981_at (DMC1), 235047_x_at (BTBD14B), and 214048_at 

(MBD4) were cancer-related genes that are reported in OMIM [11] databases. The 

ANN prediction result for this data set was considered acceptable. 

For the ovarian cancer data set, when using 20 genes as variables the survival time 

predicted by the ANN was correlated with the observed survival time. Moreover, 

genes 213270_at (MPP2), 200047_s_at (YY1), 213976_at (CIZ1), and 204726_at 

(CDH13) were cancer-related genes that are reported in OMIM [11] databases. The 

ANN prediction result for this data set was considered good. 

Microarrays are not yet routinely applied not in the diagnosis of clinical patients, and 

hence the present study was limited to gathering sufficient public-domain data to 

build and validate the prediction models. 

 



CONCLUSIONS 

In conclusion, we have developed ANNs that yielded higher prediction accuracies for 

survival times using cancer microarray data. It is evident that information related to 

gene expression levels may have played an important role in cancer prognosis 

assessment. 
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